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ENERGY FLOW ANALYSIS OF VIBRATING BEAMS
AND PLATES FOR DISCRETE RANDOM

EXCITATIONS
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Two methods for calculating the power input to vibrating beams and plates excited by
multiple discrete random forces are developed. The power input is expressed in terms of
the cross-power spectral density between the exciting forces. An approximate energy density
solution is obtained using energy flow analysis. The power input calculations and the energy
density response predictions are verified using modal analysis for different coherence
conditions between the random excitation forces.
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1. INTRODUCTION

The energy flow analysis method (EFA), and its finite element approximation, the energy
finite element method (EFEM), allow computationally efficient predictions of the spatially
and frequency averaged response of structural acoustic systems. Previous investigations of
the application of EFA to the vibration of rods and beams were reported by Wohlever
and Bernhard [1]. The approach was also applied to membranes and plates by Bouthier
and Bernhard [2, 3], and to acoustic enclosures by Bouthier [4]. These derivations assume
diffuse wave fields based on the superposition of lossy plane waves. The resulting equations
of motion, cast in terms of energy variables, are similar to those derived by Rybak and
his colleagues [5–8] using the assumption of incoherent scattered waves. They are also
similar to those obtained from the so-called Simple Energy Formulation, derived by LeBot
[9], which can itself be derived by spatially averaging exact expressions for the energetics
of the structure (the General Energy Formulation).

These methods have been verified both analytically and experimentally for simple
harmonic excitations, and for local random forces. For many applications, however, the
structure may be excited simultaneously by many local random forces, which may be
incoherent or partially coherent. In this study, two methods for calculating the input power
required for the estimation of the energy response of the structure for partially coherent
forces are derived and compared: a transfer function method and an impedance method.
Energy flow predictions are obtained for beams and plates using EFA and both power
input calculation methods. The results are compared with classical displacement solutions
obtained using modal analysis for the case of two random forces.

2. POWER INPUT TO BEAMS AND PLATES

The equations governing the energy distribution associated with the progagation of
flexural waves in a transversely vibrating beam were derived by Wohlever and Bernhard
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Figure 1. A beam excited by N discrete random forces.

[1] for free vibrations. As shown by Bouthier and Bernhard [2], the inhomogeneous form
of the energy flow analysis equation for the case in which there is a power input to the
beam is

−
c2

g

hv

d2e
dx2 + hve= pin (x), (1)

where e is the far field, time-averaged, ‘‘smoothed’’ energy density, cg is the group velocity
of flexural waves, h is the loss factor, and pin (x) is the power input per unit length. For
thin, transversely vibrating plates, where the wave field can be assumed to be a
superposition of plane waves, the governing equation is similar, but two-dimensional [2],

−
c2

g

hv
92e+ hve= pin (x, y), (2)

where 92 = 12/1x2 + 12/1y2, and pin (x,y) is the power input per unit area.
Previous work on EFA [1–4] has shown that the high frequency energy density response

of a vibrating system obtained from EFA is in good agreement with the response predicted
by exact methods, such as modal analysis, for one single local exciting force. The case of
multiple, local random exciting forces is treated in the following. A simply supported beam
and a simply supported plate will be considered, as illustrated in Figures 1 and 2,
respectively. An arbitrary number, N, of discrete random forces, which may be coherent,
incoherent or partially coherent with each other, are exerted on the structure. Two methods
to evaluate the power input were developed: a transfer function method and an impedance
method.

2.1.    

The input forces and the velocity response of the structure are assumed to be stationary
random processes. For a finite time interval 0E tET, the cross-spectrum between the

Figure 2. A plate excited by N discrete random forces.
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input force and the velocity at point i is [11]

Sfv,i (v, T, n)=
1
T

Fi (v, T, n)V*i (v, T, n), (3)

where

Fi (v, T, n)=g
T

0

fi (t, n) e−jvt dt (4)

and

Vi (v, T, n)=g
T

0

vi (t, n) e−jvt dt. (5)

In equations (4) and (5), fi and vi are the force and the velocity at point i, respectively,
the asterisk represents the complex conjugate operator, the quantities Fi and Vi represent
finite Fourier transforms, and n is the ensemble index. The power input spectral density
to point i can be obtained from the cross-spectral density function between force and
velocity, given by

pin,i =Re [Sfv,i (v)]=Re $limT:a
E{Sfv,i (v, T, n)}%, (6)

where E{ } denotes the expectation over the ensemble index n. The velocity at point i has
contributions from all N forces. Therefore, Vi can be written as

Vi (v, T, n)= s
N

j=1

Hij (v)Fj (v, T, n), (7)

where Hij is the transfer function between the excitation fj at point j and the velocity
response at point i. Substituting equation (7) into equation (3) and then equation (6) yields
the power input spectral density at point i:

pin,i = s
N

j=1

Re [Sij (v)H*ij (v)], (8)

where Sij is the cross-spectral density between forces at points i and j.
This power input calculation method is exact. From a modal description of the structural

response, the transfer function can be expressed as a summation of modes as

Hij (v)=
jv
m

s
a

r=1

fr (xi )fr (xj )
v2

r −v2(1− jh)
, (9)

where fr is the eigenfunction for the rth mode, vr is the natural frequency, and m is the
mass per unit length for the case of the beam, or the mass of unit area for the case of the
plate. The transfer function, a truncated infinite series, requires significant computational
effort, since many modes must be included for high frequency predictions.
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Figure 3. An infinite beam excited by two simple harmonic forces.

2.2.   

As an alternative approach, the input impedance of the actual structure may be
approximated by that of a comparable structure of infinite extent. This method will be
referred to as the impedance method. For one single mechanical source, the power input
at one point is [10]

pin =
=f =2
2

Re 0 1
Zm1, (10)

where Zm is the impedance at the driving point. If the impedance of an infinite system is
used to approximate the exact impedance,

pin 1 1
2=f =2 Re 0 1

Za1. (11)

The impedance of an infinitely long beam excited by a local force is [10]

Za =2(1+ j)(EI)1/4v1/2(rA)3/4 =2(1+ j)EIv−1k3, (12)

where EI is the flexural rigidity, k is the wavenumber, r is the beam density, and A is the
cross-sectional area. The impedance of an infinite plate is [10]

Za =8(Drh)1/2, (13)

where D is the bending stiffness, and rh is the mass of the plate per unit area. The
impedance of a finite beam or plate varies significantly from the impedance of an infinite
beam or plate at low frequencies, and thus the use of equation (11) in place of equation
(10) may cause significant errors. However whenever high frequencies and the spatially
averaged response are considered, the impedance of an finite system is known to approach
that of an infinite system. In this situation, the approximation is reasonable.

For multi-point excitation the calculation of power input is not as straightforward as
equation (11) because of the interaction between the excitation forces. The simple case of
an infinitely long beam excited by two simple harmonic forces will be used to illustrate
the behavior of multiple force systems. The beam is shown in Figure 3. Assuming
one-dimensional flexural wave propagation in the beam and incorporating the energy
dissipation by using a complex wavenumber, the displacement of the beam can be
expressed analytically from a travelling wave solution. The displacement in each region
is given by [10]

8y1(x)=B1 ejkx +Di ekx,
y2(x)=A2 e−jkx +B2 ejkx +C2 e−kx +D2 ekx,
y3(x)=A3 e−jkx +C3 e−kx,

xE x1,
x1 E xE x2,
xe x2,

(14)
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where k is the complex wavenumber, and x1 and x2 are the locations of the two forces.
Using the joint conditions at x1 and x2 with equation (14) yields

y1(x)=
1

4EIk3 (−jF1 ejk(x− x1) − jF2 ejk(x− x2) −F1 ek(x− x1) −F2 ek(x− x2)),

y3(x)=
1

4EIk3 (−jF1 e−jk(x− x1) − jF2 e−jk(x− x2) −F1 e−k(x− x1) −F2 e−k(x− x2)).
(15)

The power input at x1 is

pin1 = 1
2 Re (F1v*1 )= 1

2 Re (F1(−jv)y*1 ). (16)

When the loss factor is small, hW 1, the complex wavenumber, k, and the complex Young’s
modulus, E, can be written approximately as [10]

k= k(1− jh/4), E=E(1+ jh). (17)

Combining equation (15) with equation (17) and substituting into equation (16) yields

pin1 =
1
2

v

4EIk3 Re [F1F*1 (1+ j)(1+ jh/4)+F1F*2 (1+ jh/4) e−jk(1+ jh/4)(x1 − x2)

+ j ek(1+ jh/4)(x1 − x2))], (18)

which can also be expressed as

pin1 =
v

4EIk3 Re [S11(1+ j)(1+ jh/4)+S12(1+ jh/4) e−jk(1+ jh/4)(x1 − x2)

+ j ek(1+ jh/4)(x1 − x2))], (19)

This relationship can be extended to the case of N random input forces, for which the
power input spectral density at point i can be written as

pin,i =
v

4EIk3 s
N

j=1

Re [Sij (v)aij ], (20)

where the correction factor, aij , is

aij =(1+ jh/4) ejk(1+ jh/4)=xi − xj= +j e−k(1+ jh/4)=xi − xj=). (21)

For plates, a similar approach using cylindrical travelling waves leads to the expression

pin,i =
1

8(Drh)1/2 s
N

j=1

Re [Sij (v)aij ], (22)

where the correction factor, aij , is

aij =(1+ jh/2)[H(1)
0 (k(1+ jh/4)rij )−H(1)

0 (jk(1+ jh/4)rij )], (23)

and H(1)
0 is the Hankel function of the first kind; rij is the distance between points i and

j. Again, the only approximation involved in the impedance method is that the impedance
of an infinite structure is adopted as the impedance at the driving point. Potential errors
caused by this approximation are investigated in the next section.

The coherence condition between any two excitation forces is involved in the
cross-power spectral density. The ordinary coherence function is defined as [11]

g2 =
=Sij =2
SiiSjj

. (24)
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When the two forces are incoherent, then Sij =0 and g=0. When the two forces are perfectly
coherent, =Sij =2 =SiiSjj and g=1.When the two forces are partially coherent, 0Q =Sij =2 QSiiSjj

and 0Q gQ 1.

3. THE ENERGY DENSITY RESPONSE

3.1.       

3.1.1. The response of beams
A so-called ‘‘exact’’ formulation for the energy density response of a beam or a plate

may be obtained analytically using a modal analysis method. The equation of motion for
a transversely vibrating beam with internal losses is

EI(1+ jh)
14u
1x4 + rA

12u
1t2 = f(x, t), (25)

where u is the transverse displacement of the beam. For the multi-beam excitation shown
in Figure 1, the force term is

f(x, t)= s
N

i=1

fi (t)d(x− xi ). (26)

The modal superposition approximation yields

u(x, t)= s
a

r=1

ur (t)fr (x), (27)

where fr is the rth natural mode of the beam and ur is the magnitude of rth mode.
Substituting equations (26) and (27) into equation (25), one obtains

(1− jh)ür +v2
r ur =

qr (t)
rA

, (28)

where

qr (t)= s
N

i=1

fifr (xi ). (29)

The Fourier transform of equation (28), and substitution into equation (27), yields the
Fourier transform of the beam displacement,

u(x, v)=
1

rA
s
a

r=1

fr (x)
v2

r −v2(1− jh)
s
N

i=1

Fifr (xi ). (30)

Integration of the displacement power spectrum over the frequency range of interest yields
the band-limited mean square value of the displacement [12],

u2(x)=
1
p

1
(rA)2 s

a

r=1

s
a

s=1

fr (x)fs (x) s
N

i=1

s
N

i=1

fr (xi )fs (xj )

× Re $g
a

0

Hr (v)H*s (v)Sij (v) dv%, (31)
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where the overbar denotes time averaging. If cross-modal terms are neglected, equation
(31) takes the simpler form

u2(x)=
1
p

1
(rA)2 s

a

r=1

f2
r (x) s

N

i=1

s
N

j=1

fr (xi )fr (xj )Re $g
a

0

Hr (v)]2Sij(v) dv%, (32)

where Hr (v)=1/[v2
r −v2(1− jh)].

The total energy response of the beam is the sum of the kinetic energy and the potential
energy [3]:

e= 1
2rAv2(x)+ 1

2EI012u
1x21

2

, (33)

where v(x) is the velocity distribution. Both v(x) and 12u/1x2 may be obtained from u(x).

3.1.2. The response of plates
Similarly, expressions for the energy density response of a plate under discrete random

excitation may be obtained using modal analysis methods. The mean square value of the
transverse displacement is

u2(x, y)=
1
p

1
(rh)2 s

a

r=1

s
a

s=1

fr (x, y)fs (x, y) s
N

i=1

s
N

j=1

fr (xi , yi )fs (xj , yj )

× Re $g
a

0

Hr (v)H*s (v)Sij (v) dv%. (34)

If the cross-modal terms are neglected,

u2(x, y)=
1
p

1
(rh)2 s

a

r=1

f2
r (x, y) s

N

i=1

s
N

j=1

fr (xi , yi )fr (xj , yj )Re $g
a

0

Hr (v)]2Sij (v) dv%. (35)

where Hr (v)=1/[v2
mn −v2(1− jh)].

The kinetic energy of a plate is [3]

T= 1
2rhv2(x, y). (36)

The kinetic energy can be calculated readily from the displacement solution. The
expression for the potential energy, however, is complicated. In the far field, the kinetic
energy and the potential energy are approximately equal, as illustrated in reference [3].
Hence, the total energy will be approximated as twice the kinetic energy in the following,
i.e.:

e=2T= rhv2(x, y). (37)



.   .848

3.2.      

3.2.1. Response of beams
The energy problem corresponding to Figure 1 is illustrated in Figure 4. The beam is

simply supported at both ends; thus the flux of energy there is zero. The power input is
broadband. Hence, the total energy density may be calculated by integrating the energy
density over the frequency range,

etotal =g
v2

v1

e dv. (38)

For numerical implementation, the integral may be replaced by a summation:

etotal = s
v2

v1

edv, (39)

where e can be obtained by solving the energy flow analysis equation (equation (1)).
For a beam of length L, the energy density e can be assumed to be

e= s
a

r=0

Ar cos
rpx
L

. (40)

The basis function cos (rpx/L) satisfies the energy boundary conditions. The power inputs
are calculated from the transfer function method or the impedance method developed in
section 2. Using Fourier techniques, the power input can be expanded in terms of the basis
function as

pin (x)= s
a

r=0

Br cos
rpx
L

, (41)

where

Br =g
L

0

pin (x) cos
rpx
L

dx. (42)

Using equation (1), the energy density is

e= s
a

r=0

Br cos (rpx/L)
(c2

g /hv)(rp/L)2 + hv
. (43)

Figure 4. A beam excited by N power inputs.



   849

Figure 5. The configuration for the case for the simply supported beam excited by two discrete random forces.

3.2.2. The response of plates
For the corresponding plate vibration problems, the energy density calculated by EFA

is

e= s
a

m,n=0

Bmn cos (mpx/Lx) cos (npy/Ly)
(c2

g/hv)[(mp/Lx)2 + (np/Ly)2]+ hv
, (44)

where

Bmn =g
Ly

0 g
Lx

0

pin (x, y) cos
mpx
Lx

cos
npy
Ly

dx dy (45)

and Lx and Ly are the dimensions of the plate.

4. RESULTS

The accuracy of several aspects of the energy flow analysis approach will be examined
in this section. The accuracy of the impedance method will be studied by comparing the
computed power input values at point loads with the power inputs calculated using the
‘‘exact’’ transfer function method. The effects of the input force coherence on the power
inputs and energy responses will be discussed. The accuracy of the EFA will also be
investigated for multiple inputs by comparing the energy density response of beams and
plates obtained using the modal analysis method with both EFA solutions.

4.1. 

For the beam cases, the beam is uniform and simply supported at both ends. Two
random forces are acting on the beam, as shown in Figure 5. The auto-spectral densities
of the two forces are equal and have a Gaussian distribution. The center frequency is
500 Hz and the half-power bandwidth is 230 Hz, as shown in Figure 6. The mean square
value of each force is 5·0×10−5 N2. The beam parameters are: E=7·1×1010 N m−2,
A=0·0001 m2, r=2700 kg m−3, I=8·33×10−10 m4, h=0·2 and L=1·0 m.

The power inputs were calculated over the frequency range from 0 Hz to 1000 Hz. The
frequency range was divided into 200 frequency bands, with a resolution bandwidth of
5 Hz. The power input for each frequency component was calculated using the transfer
function method and the impedance method. The total power input was obtained by
summing the power input for each frequency component.

In Figure 7, the dependence of the power input on the coherence of the two input forces,
x1 =0·3 m and x2 =0·7 m, is shown. The result shown is the power input at position x1.
For these force positions, the ‘‘exact’’ power input increases with coherence. The
impedance method captures this trend. The impedance method underestimates the exact
result by about 1 dB. The difference between the two power input results decreases with
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Figure 6. The autospectral density of the forces f1 and f2 for the beam case studies.

coherence. In Figure 8, the effects of input force coherence on power inputs when the two
force positions are x1 =0·4 m and x2 =0·6 m is shown. The result shown is the power input
at point x1. For this situation, the ‘‘exact’’ power input decreases with coherence. The
power input when the two forces are completely coherent is about 4 dB lower than the
power input when the forces are incoherent. The result by the impedance method also
shows this trend. Note that the cross-spectral density always increases with the coherence.
Therefore, it is the correction factor in equation (20) that dominates and makes the power
input decrease with coherence in this case. It is clearly shown that the effects of coherence

Figure 7. Power input versus input forces coherence for the force positions: x1 =0·3 m, x2 =0·7 m. ——,
transfer function method; ----, impedance method. The reference input power is 1×10−12 W m−2.
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Figure 8. Power input versus input forces coherence for the force positions: x1 =0·4 m, x2 =0·6 m. ——,
transfer function method; ----, impedance method. The reference input power is 1×10−12 W m−2.

on the power input depends on the force positions. The coherence has a more significant
effect when the two force positions are close to each other. The impedance method is
consistent with the transfer function method in predicting the effects of coherence and force
positions.

The accuracy of the EFA was investigated by comparing the EFA solutions with modal
analysis results. The two input force positions are x1 =0·3 m and x2 =0·7 m. For the
numerical implementation of the modal analysis method, a total of 70 modes were used
to insure satisfactory convergence of the solution. Results were obtained with and without
including the cross-modal terms.

For the EFA method, the power inputs were calculated using both the transfer function
method and the impedance method. The same frequency range divisions as those used in
calculating the power inputs were used for EFA. The energy density for each frequency
component was calculated from equation (43). The total energy density response was
obtained by summing the energy density for each frequency component using equation
(39).

In Figure 9 is shown the energy density response for the case of two incoherent random
forces; i.e., g=0. Two of the results shown are obtained using the modal analysis method:
one considering the cross-modal terms and one neglecting the cross-modal terms. The
other two results are obtained from EFA: one using the transfer method, and the other
one using the impedance method.

There is a difference between the two results for the modal analysis method, particularly
near the center of the beam. The errors involved, however, are not very significant. There
are discrepancies between the modal analysis solutions and the approximate EFA
solutions. The energy distribution obtained from EFA is nearly uniform along the beam.
It is slightly higher at the two excitation points, and decays away from the excitation. In
contrast, the exact energy distribution is non-uniform. This is especially true near the
boundaries, where the exact solution tends toward zero (in agreement with the boundary
conditions) while the approximate solutions are nearly constant. However, the EFA
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solution is a good representation of the spatially averaged response. This result is typical
of results found by previous investigators for a harmonic input [2–4]. The difference
between the two EFA results is approximately 1 dB. The difference between the power
inputs calculated using the transfer function method and the impedance method is
approximately 1 dB, as shown in Figure 7. Due to the linear relationship between the
power input and the EFA energy density, the difference between the two EFA results is
the same as the difference between the power inputs.

The case of two partially coherent forces was also investigated. The coherence between
the two random forces, expressed as

g=e−0·0005v=x1 − x2=, (46)

was assumed to depend on the distance between the two forces and to decrease with
frequency. The energy density distributions computed using the modal analysis method
and EFA are shown in Figure 10. Similar results for the case of two perfectly coherent
random forces, i.e., g=1, are shown in Figure 11. As the coherence is increased, the effects
of the interference between the two random forces become important. This is reflected in
the exact results in Figures 9–11. For cases with a higher coherence, the spatial variation
of the energy density is increased. The difference between the two EFA results decreases
when the coherence increases, because the difference between the two power inputs
decreases with coherence. Furthermore, the global energy density response increases with
the coherence, as demonstrated by both the modal analysis method and the EFA method.
For this case, the power inputs increase with coherence, as shown in Figure 7. For all cases,
both EFA solutions are good predictions of the spatially averaged results.

4.2. 

The plate used for the verification study was simply supported along its edges and
excited by two random forces located at (x1, y1)= (0·3 m, 0·3 m) and (x2, y2)= (0·7 m,
0·7 m), as shown in Figure 12. The auto-spectral densities of the two forces were equal

Figure 9. Energy density versus position for the case of two incoherent forces. ——, modal analysis
method/considering cross-modal terms; ····, modal analysis method/neglecting cross-modal terms; ----,
EFA/transfer function method; –·–·–·–, EFA/impedance method. The reference energy density is 1×10−12 J m−2.
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Figure 10. Energy density versus position for the case of two partially coherent forces. ——, modal analysis
method/considering cross-modal terms; ····, modal analysis method/neglecting cross-modal terms; ----,
EFA/transfer function method; –·–·–·–, EFA/impedance method. The reference energy density is 1×10−12 J m−2.

and the same as those for the beam cases. The parameters of the plate were:
E=7·1×1010 N · m−2, r=2700 Kg · m−3, h=0·001 m, Lx =Ly =1·0 m, h=0·2 and
s=0·3.

The power inputs were calculated using both the transfer function method and the
impedance method. The power input at point load (x1, y1) is shown in Figure 13 for
different input force coherence. The power inputs are essentially independent of coherence

Figure 11. Energy density versus position for the case of two perfectly coherent forces. ——, modal analysis
method/considering cross-modal terms; ····, modal analysis method/neglecting cross-modal terms; ----,
EFA/transfer function method; –·–·–·–, EFA/impedance method. The reference energy density is 1×10−12 J m−2.
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Figure 12. The plate response problem.

in this case, which indicates that, for these specific force positions, the coherence has no
effects on power input. The difference between the two results is small. This indicates that
the approximate method for calculating the power input using the infinite structure
impedance approximation is accurate. This is significant, because the computational effort
for calculating the power input to a system is greatly reduced using the impedance
approximation. In addition, power input using the transfer function method requires
knowledge of the modes of the structure, whereas the impedance method requires only
local information. For plates with high modal density, the difference between the results
of the two power input methods is much smaller than that for beams, which indicates that
the impedance method is more effective for plates than for beams.

The energy density was computed using the modal analysis method, including the
cross-modal terms, and EFA. The input power used for EFA was obtained using both the
transfer function method and the impedance method. For the modal analysis method, a

Figure 13. Power input versus input forces coherence for the force positions: (x1, y1)= (0·3 m, 0·3 m),
(x2, y2)= (0·7 m, 0·7 m). ——, transfer function method; ----, impedance method. The reference input power is
1×10−12 W m−2.
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Figure 14. Energy density distribution by modal analysis method for the case of two discrete incoherent
random forces. The reference energy density is 1×10−12 J m−2.

total of 2500 modes were used, which ensured convergence for this case. For EFA, the
energy density was computed over the frequency range from 0 Hz to 1000 Hz. The
frequency range was divided into 100 bands with bandwidth 10 Hz.

Three cases were studied for plate vibrations: (1) incoherent forces, (2) partially coherent
forces and (3) perfectly coherent forces. The exact energy distribution for case 1 (g=0)
is shown in Figure 14. The approximate energy distributions obtained from the transfer
function method and the impedance method are shown in Figures 15 and 16, respectively.
The differences between the two approximate results are not significant.

For the second case, the coherence between the two random forces was assumed to be
given by

g=e−0·005v=x1 − x2= e−0·02v=y1 − y2=; (47)

i.e., to decay exponentially as a function of distance between the two forces, and to
decrease with frequency at a different rate in the longitudinal and transverse directions.
The exact energy density distribution is shown in Figure 17. The EFA solutions computed
from the two different power input methods are almost the same as those for the case of

Figure 15. Energy density distribution by EFA/transfer function method for the case of two discrete incoherent
random forces. The reference energy density is 1×10−12 J m−2.
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Figure 16. Energy density distribution by EFA/impedance method for the case of two discrete incoherent
random forces. The reference energy density is 1×10−12 J m−2.

incoherent forces, because the power input is constant with coherence. The results are not
shown here for conciseness. For the last case, the two random forces are coherent. The
exact result is shown in Figure 18. The two EFA results are very similar to those for the
cases of incoherent and partially coherent forces, and therefore are not shown.

In order to illustrate the difference between the exact solutions and the EFA
approximations, and to verify the effects of different coherence conditions, the energy
response along the diagonal line x= y was plotted for various cases. A comparison of the
EFA results computed using different power input methods is shown in Figure 19. The
results obtained from the transfer function method and impedance method are in excellent
agreement. For these force positions, the coherence has no effect on power inputs, or the
EFA energy responses. As discussed above, the power input depends on the positions of
the excitation forces. For other excitation positions, the global energy density responses
may increase or decrease with coherence.

A comparison between the exact energy density distribution calculated for all three cases
is shown in Figure 20, together with the approximate EFA solutions (from Figure 19). In
the center of the plate, the energy density responses increase with coherence. This is due

Figure 17. Energy density distribution by modal analysis method for the case of two discrete partially coherent
random forces. The reference energy density is 1×10−12 J m−2.
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Figure 18. Energy density distribution by modal analysis method for the case of two discrete perfectly coherent
random forces. The reference energy density is 1×10−12 J m−2.

to constructive interference. However, the effects of coherence are relatively small at the
excitation points and near the boundary for these force positions. The exact results
monotonically decay from the excitation points, with an increase in energy density close
to the boundaries. This is an artifact from the assumption that the potential energy and
the kinetic energy are equal, which breaks down close to the plate boundary. In the vicinity
of the excitation points, the EFA result is lower than the exact result, whereas in the region
close to the boundaries EFA overpredicts the energy response. These trends are typical
of EFA results reported in previous studies [2–4], and occur because this particular EFA
approximation (assuming lossy plane waves) does not model the near field. A solution to
this problem was proposed by Smith [14]. In the area far from the excitation points and
the boundary, the EFA result is a good representation of the exact result.

Figure 19. Energy density distribution by EFA along the diagonal: ——, transfer function method; ----,
impedance method. The reference energy density is 1×10−12 J m−2.
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Figure 20. Energy density distribution along the diagonal for the cases of different coherence: ——,
incoherent/exact result; ----, partially coherent/exact result; –·–·–·–, coherent/exact result; ····, EFA result. The
reference energy density is 1×10−12 J m−2.

5. CONCLUSIONS

Two methods for calculating the power input to vibrating beams and plates excited by
discrete random forces have been developed: a transfer function method and an impedance
method. The power input was expressed in terms of the cross-power spectral density
between the excitation forces, thus allowing for the inclusion of the coherence condition
in the expressions for the power input. The energy response of simply supported beams
and plates was calculated using both power input calculation schemes for different
coherence conditions between the excitation random forces. The results showed that the
energy flow analysis method can be used to predict the space averaged energy response
of a vibrating system under multiple random exciting forces. Results using the impedance
method of calculating power inputs were found to be accurate within the accuracy expected
for approximate, energy-based models. The methods, can be easily implemented using the
finite element method, and are expected to be applicable to many practical engineering
problems.
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